Structural Studies of Technetium Complexes. Part 4.1 The Crystal Structure of trans, trans-Acetonitriledi-isothiocyanato(nitrido)bis(triphenylphosphine)technetium(V)-Acetonitrile (1/0.5) \dagger

John Baldas, John Bonnyman, and Geoffrey A. Williams*
Australian Radiation Laboratory, Lower Plenty Road, Yallambie, Victoria, 3085, Australia

Abstract

The title compound, $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$, has been prepared by substitution of $\left[\mathrm{TcNCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right.$] with $\mathrm{NH}_{4} \mathrm{NCS}$ followed by the reaction of the [$\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$] complex with $\mathrm{CH}_{3} \mathrm{CN}$. The crystal structure of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$ has been determined by single-crystal X-ray diffraction methods at $25 \pm 2^{\circ} \mathrm{C}$. Crystals are monoclinic, space group $P 2_{1} / c$, with $a=9.296(3), b=18.614(5), c=23.307(6) \AA, \beta=109.63(2)^{\circ}$, and $Z=4$. Diffractometry has provided significant Bragg intensities for 5498 independent reflections and the structure has been refined by full-matrix least-squares methods to $R=0.045$. The compound consists of discrete [$\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] molecules with $\mathrm{CH}_{3} \mathrm{CN}$ of crystallisation also present in the crystal lattice. The technetium atom has a distorted octahedral environment with Tc-N-C angles of 177.1(4) and $166.7(4)^{\circ}$ for the NCS ligands and $168.6(4)^{\circ}$ for the $\mathrm{CH}_{3} \mathrm{CN}$ ligand. The $\mathrm{Tc} \equiv \mathrm{N}$ bond distance is $1.629(4) \AA$ and the strong trans influence of the nitrido-group is evident in the exceptionally long $\mathrm{Tc}-\mathrm{N}$ bond distance [2.491(4) \AA] to the $\mathrm{CH}_{3} \mathrm{CN}$ ligand.

The study of the co-ordination chemistry of technetium has grown rapidly in recent years, ${ }^{2,3}$ due both to the widespread use of complexes of the short-lived isomer, technetium- 99 m ($t_{t}=6 \mathrm{~h}$), in diagnostic nuclear medicine, ${ }^{4}$ and to the greater availability of the long-lived technetium-99 $\left(t_{\mathrm{t}}=2.12 \times 10^{5}\right.$ years). Single-crystal X-ray diffraction studies have played a major role in the structure determination of technetium-99 complexes and this topic has been recently comprehensively reviewed. ${ }^{5}$

The crystal structures of a variety of $\mathrm{Tc}^{\mathrm{v}}=\mathrm{O}$ complexes have been reported. ${ }^{5}$ These complexes are characterized by very short ($1.61-1.67 \AA$) technetium-oxygen bonds. Structural studies of $\mathrm{Tc} \equiv \mathrm{N}$ complexes are limited to our report of the crystal structure of $\left[\mathrm{TcN}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right] .{ }^{6}$ The structure of transition-metal nitrido-complexes is of interest because of the effects arising from the powerful trans influence and large steric requirements of the nitrido-ligand. ${ }^{7,8}$ We now report the synthesis and crystal structure of the first six-co-ordinate $\mathrm{Tc}=\mathrm{N}$ complex, trans,trans-acetonitriledi-isothiocyanato(nitrido)bis(triphenylphosphine)technetium(v) hemiacetonitrile solvate, $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$. This complex was prepared by the reaction of $\left[\mathrm{TcNCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with thiocyanate ions followed by the reaction of the complex $[\mathrm{TcN}-$ $\left.(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with acetonitrile.

Experimental

Ammonium [${ }^{99} \mathrm{Tc}$]pertechnetate was supplied by Amersham International. All reagents and solvents used were of analytical grade. $\left[\mathrm{TcNCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was prepared from ammonium $\left[{ }^{99} \mathrm{~T}\right.$ c]pertechnetate as described by Kaden et al. ${ }^{9}$ The i.r. spectra were determined in KBr discs on a Perkin-Elmer 197 spectrophotometer and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum on a Varian EM360A spectrometer. Microanalyses were performed by the Australian Microanalytical Service, Melbourne.

Di-isothiocyanato(nitrido)bis(triphenylphosphine)techne-tium(v).-Ammonium thiocyanate ($250 \mathrm{mg}, 3.3 \mathrm{mmol}$) dis-

[^0]solved in water $\left(1 \mathrm{~cm}^{3}\right)$ was added to a suspension of $[\mathrm{TcN}$ $\left.\mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](200 \mathrm{mg}, 0.28 \mathrm{mmol})$ in ethanol $\left(40 \mathrm{~cm}^{3}\right)$ and the mixture was heated under reflux for 30 min . The clear orange solution was cooled and the bulk of the ethanol removed by rotary evaporation. Water ($25 \mathrm{~cm}^{3}$) was added and the mixture extracted with $2 \times 25 \mathrm{~cm}^{3}$ of chloroform. The chloroform extracts were dried over anhydrous sodium sulphate, filtered, and evaporated to $c a .5 \mathrm{~cm}^{3}$ in volume. Addition of diethyl ether resulted in the precipitation of fine yellow crystals of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ which were collected by filtration, yield $147 \mathrm{mg}\left\{69 \%\right.$ based on $\left.\left[\mathrm{TcNCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\right\}$. Recrystallization from benzene gave yellow crystals, m.p. $230-234{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 59.7; H, 4.2; N, 5.9; P, 8.6; S, 7.6. $\mathrm{C}_{38}-$ $\mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Tc}$ requires C, $\left.60.6 ; \mathrm{H}, 4.0 ; \mathrm{N}, 5.6 ; \mathrm{P}, 8.2 ; \mathrm{S}, 8.5 \%\right)$. The i.r. spectrum showed peaks at $2070 \mathrm{vs}, 1481 \mathrm{~s}, 1435 \mathrm{vs}$, $1099 \mathrm{~s}, 1087 \mathrm{~s}, 742 \mathrm{~s}$, and $693 \mathrm{vs} \mathrm{cm}^{-1}$.
trans,trans-Acetonitriledi-isothiocyanato(nitrido)bis(tri-
phenylphosphine)technetium(v).-A solution of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] (50 mg) in acetonitrile ($5 \mathrm{~cm}^{3}$) was heated under reflux for 10 min and then allowed to cool to room temperature. The orange-red crystals of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] were collected by filtration and dried under vacuum; m.p. $230-233^{\circ} \mathrm{C}$ (decomp.), yield $47 \mathrm{mg}\left(89^{\circ}\right.$) (Found: C, 59.9; H, 4.2; N, 7.2; P, 7.7; S, 8.2. $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}$ Tc requires C, 60.4; H, 4.2; N, 7.05; P, 7.8; S, 8.1 \%). The i.r. spectrum showed peaks at $2295 \mathrm{vw}, 2265 \mathrm{vw}, 2104 \mathrm{~s}, 2092 \mathrm{vs}, 2060 \mathrm{vs}$, $1480 \mathrm{~s}, 1431 \mathrm{~s}, 1095 \mathrm{~s}, 1088 \mathrm{~s}, 1070 \mathrm{~m}, 1065 \mathrm{~m}, 746 \mathrm{~s}, 708 \mathrm{~s}$, and $694 \mathrm{vs} \mathrm{cm}^{-1}$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed peaks at $\delta 7.5(\mathrm{~s}, \mathrm{Ph})$ and $2.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

Crystallography.-Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of a benzeneacetonitrile ($1: 2 \mathrm{v} / \mathrm{v}$) solution of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] at room temperature. Oscillation and Weissenberg photographs showed the crystals to be monoclinic, of space group $P 2_{1} / c$. Unit-cell parameters, together with their estimated standard deviations (e.s.d.s), were derived by a least-squares analysis of the setting angles, determined on a diffractometer at $25 \pm 2{ }^{\circ} \mathrm{C}$ with $\mathrm{Cu}-K_{x}$ radiation ($\lambda=1.5418$ \AA), for 12 angularly well separated reflections each with 2θ $>40^{\circ}$.

Crystal data. $\mathrm{C}_{41} \mathrm{H}_{34.5} \mathrm{~N}_{4.5} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Tc}, \quad M=815.23$, Monoclinic, $a=9.296(3), b=18.614(5), c=23.307(6) \AA, \beta=$

Table 1. Final atomic positional co-ordinates for non-hydrogen atoms of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$

Atom	X/a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
Tc	0.07165(3)	0.24095(2)	0.07952(1)	C(17)	-0.0879(4)	0.2863(2)	0.1962(2)
S(1)	0.5249(2)	0.0940(1)	0.1448(1)	C(18)	$-0.0858(5)$	$0.3337(2)$	$0.2426(2)$
S(2)	-0.1801(2)	$0.4695(1)$	$0.0606(1)$	C(19)	-0.2227(5)	0.3557(2)	0.2491(2)
$\mathrm{P}(1)$	0.0882(1)	0.2522(1)	0.1882(1)	C(20)	-0.3589(6)	$0.3307(3)$	$0.2100(2)$
P (2)	0.0775(1)	0.2388(1)	-0.0280(1)	C(21)	-0.3618(6)	0.2837(3)	$0.1644(2)$
$\mathrm{N}(1)$	0.2602(4)	0.1761(2)	0.1038(2)	C(22)	-0.2270(5)	0.2617(2)	$0.1566(2)$
$\mathrm{N}(2)$	-0.0623(4)	0.3324(2)	0.0640 (2)	C(23)	$0.0488(5)$	0.1485(2)	-0.0608(2)
$\mathrm{N}(3)$	0.2626(4)	0.3384(2)	0.0900 (2)	C(24)	0.1347(6)	$0.1232(3)$	-0.0943(2)
N(4)	-0.0631(4)	0.1810 (2)	$0.0668(2)$	C(25)	$0.1101(7)$	$0.0536(3)$	-0.1190(3)
N(5)	$0.4015(26)$	$0.9262(11)$	$0.0226(10)$	C(26)	-0.0005(6)	0.0114 (3)	-0.1108(3)
C(1)	0.3699(6)	$0.1406(3)$	0.1201(2)	C(27)	-0.0922(7)	0.0366(3)	-0.0795(3)
C(2)	-0.1116(5)	0.3899(2)	0.0628(2)	C(28)	-0.0668(6)	0.1058(3)	-0.0538(3)
C(3)	0.3402(5)	0.3833(3)	0.0845(2)	C(29)	$0.2564(4)$	0.2692(2)	-0.0370(2)
C(4)	0.4441 (1)	0.4390(3)	0.0790(3)	C(30)	$0.2617(5)$	0.3255(2)	-0.0749(2)
C(5)	$0.1163(4)$	$0.1660(2)$	0.2276(2)	C(31)	0.4017(6)	0.3476 (3)	-0.0788(2)
C(6)	0.2490(5)	0.1262(2)	0.2346(2)	C(32)	0.5347(6)	0.3131(3)	-0.0460(2)
C(7)	0.2690 (5)	0.0597(3)	0.2629(2)	C(33)	0.5292(6)	0.2554(3)	-0.0094(2)
C(8)	$0.1625(6)$	0.0328(3)	0.2851(2)	C(34)	0.3914(5)	0.2336(3)	-0.0049(2)
C(9)	0.0326(6)	0.0709(3)	0.2792(2)	C(35)	-0.0691(5)	0.2946(2)	-0.0809(2)
$\mathrm{C}(10)$	0.0079(5)	$0.1378(3)$	0.2504(2)	C(36)	-0.0712(5)	0.3680 (2)	-0.0685(2)
C(11)	0.2340(4)	0.3112(2)	0.2366(2)	C(37)	-0.1811(5)	0.4119(3)	-0.1078(2)
C(12)	0.3392(5)	0.2893(2)	0.2923(2)	C(38)	-0.2888(6)	$0.3830(3)$	-0.1589(2)
C(13)	0.4432(5)	0.3384(3)	$0.3285(2)$	C(39)	-0.2875(6)	$0.3116(3)$	-0.1712(2)
C(14)	0.4419(5)	0.4087(3)	0.3107(2)	C(40)	-0.1780(5)	0.2666(2)	-0.1322(2)
C(15)	0.3364(5)	0.4313(3)	0.2560(2)	C(41)	0.4701(21)	0.9734(9)	0.0108(8)
C(16)	0.2339(5)	0.3833(2)	0.2187(2)	C(42)	0.5701(43)	1.0322(21)	-0.0017(18)

$109.63(2)^{\circ}, U=3798.6 \AA^{3}, F(000)=1668, Z=4, \quad D_{\mathrm{c}}=$ $1.425 \mathrm{Mg} \mathrm{m}^{-3}$, space group $P 2_{1} / c, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=4.967 \mathrm{~mm}^{-1} .{ }^{10}$ Intensity data were recorded at $25 \pm 2{ }^{\circ} \mathrm{C}$ on an automatic Siemens AED diffractometer with nickel-filtered $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation. The crystal was cut from a long red needle, and it had well developed (100) and (010) faces with perpendicular distances between parallel faces of 0.14 and 0.12 mm respectively. Along the needle direction, the crystal was 0.39 mm in length. The crystal was aligned with the c (needle) axis approximately parallel to the diffractometer φ axis. Intensities were measured by the 'five-values' $\theta: 2 \theta$ scan procedure detailed by Hoppe, ${ }^{11}$ with a 2θ scan rate of $10^{\circ} \mathrm{min}^{-1}$. A reference reflection, monitored every 20 reflections, showed no significant variation in intensity during data collection. A total of 7635 different reflections in one quadrant was measured within the limit $(\sin \theta) / \lambda \leqslant 0.609 \AA^{-1}$. Of these, 5501 unique reflections were considered observed $[I>3 \sigma(I)$] and were used for the structure analysis. The integrated intensities were corrected for Lorentz and polarisation effects, and for absorption. ${ }^{10}$

Structure determination and refinement. The structure was solved by the heavy-atom method. The position of the technetium atom was derived from a three-dimensional Patterson map, and subsequent difference-Fourier syntheses revealed the positions of all 49 non-hydrogen atoms of the complex. An acetonitrile solvent molecule was located close to the special position $\left(\frac{1}{2}, 0,0\right)$, precluding the possibility of one solvent molecule per metal complex since this would place two centrosymmetrically related acetonitrile molecules at an unrealistically short distance from each other. The acetonitrile solvent atoms were accordingly each given an occupancy factor of 0.5 with the solvent molecule being assumed disordered between its two centrosymmetrically related positions. The relative peak heights of these atoms in the electron-density maps also suggested disorder.

Full-matrix least-squares refinement, with data uncorrected for absorption and with anisotropic temperature factors assigned to all but the 36 phenyl carbon atoms and the three
carbon and nitrogen solvent atoms, converged (274 variables) with a reliability index $R=\Sigma \Delta F / \Sigma\left|F_{0}\right|$ of 0.055 where $\Delta F=$ $\| F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|$. The function minimised was $\Sigma w(\Delta F)^{2}$, where w is the weight assigned to the $\left|F_{0}\right|$ values. After absorption corrections were applied to the intensity data, with transmission factors ranging between 0.34 and 0.62 , the same refinement converged with $R=0.054$.

All hydrogen atoms were then included in the scattering model in idealised positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$). The 30 phenyl hydrogen atoms were given a common isotropic temperature factor B which, at convergence, had the value 6.4(3) \AA^{2}, and the methyl groups on the co-ordinated and solvent acetonitrile molecules were refined as idealised rigid groups each with common isotropic temperature factors which refined to $B=12(1)$ and 22(8) \AA^{2} respectively. An examination of $\left|F_{0}\right|$ and $\left|F_{\mathrm{c}}\right|$ values at this stage indicated that the three most intense reflections were significantly affected by extinction and these were omitted from the refinement. Least-squares refinement, with anisotropic temperature factors assigned to 13 atoms of the metal complex, and isotropic temperature factors assigned to the remaining 36 phenyl carbon atoms and three carbon and nitrogen atoms of the solvent molecule, converged $\{\mathrm{NV}=283$ variables, $\mathrm{NO}=5498$ observations, $w=$ $\left.\left[\sigma^{2}\left(F_{0}\right)+0.0001\left(F_{\mathrm{o}}{ }^{2}\right)\right]^{-1}\right\}$ with $R=0.045, R^{\prime}=\left[\Sigma w(\Delta F)^{2} /\right.$ $\left.\Sigma w F_{0}{ }^{2}\right]^{\ddagger}=0.049$, and $\chi=\left[\Sigma w(\Delta F)^{2} /\left(\mathrm{NO}^{-} \mathrm{NV}\right)\right]^{\ddagger}=2.54$. The maximum parameter shift-to-error ratios at convergence were $0.26: 1$ for the X / a positional co-ordinate of the solvent nitrogen atom and 0.2:1 for the Z / c and U_{23} parameters of the methyl carbon atom [C(4)] of the co-ordinated acetonitrile molecule. All other shift-to-error ratios for non-hydrogen atoms of the metal complex were $<0.08: 1$. The largest peaks on a final difference synthesis were of heights ± 0.62 e \AA^{-3}.

Final atomic positional co-ordinates, with e.s.d.s in parentheses, are listed in Table 1.

Neutral atom scattering-factor curves for C, N, P, and S were taken from ref. 12, that for neutral Tc was from ref. 13. and that for H was from ref. 14. Real and imaginary anomalous dispersion corrections ${ }^{10}$ were applied to the non-hydro-

Table 2. Interatomic bond distances (\AA) in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$

$\mathrm{Tc}-\mathrm{P}(1)$	$2.494(1)$	$\mathrm{P}(1)-\mathrm{C}(17)$	$1.823(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.381(6)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.382(6)$
$\mathrm{Tc}-\mathrm{P}(2)$	$2.524(1)$	$\mathrm{P}(2)-\mathrm{C}(23)$	$1.830(4)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.404(5)$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1.397(6)$
$\mathrm{Tc}-\mathrm{N}(1)$	$2.045(4)$	$\mathrm{P}(2)-\mathrm{C}(29)$	$1.834(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.391(6)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.375(7)$
$\mathrm{Tc}-\mathrm{N}(2)$	$2.068(3)$	$\mathrm{P}(2)-\mathrm{C}(35)$	$1.824(4)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.393(6)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.382(7)$
$\mathrm{Tc}-\mathrm{N}(3)$	$2.491(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.400(5)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.370(6)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.381(6)$
$\mathrm{Tc}-\mathrm{N}(4)$	$1.629(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.387(6)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.368(6)$	$\mathrm{C}(29)-\mathrm{C}(34)$	$1.393(6)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.167(6)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.357(6)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.388(6)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.397(5)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.160(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.367(6)$	$\mathrm{C}(17)-\mathrm{C}(22)$	$1.389(6)$	$\mathrm{C}(36)-\mathrm{C}(37)$	$1.386(6)$
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.139(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(7)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.374(6)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.382(6)$
$\mathrm{C}(1)-\mathrm{S}(1)$	$1.613(5)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1.390(6)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.404(7)$	$\mathrm{C}(38)-\mathrm{C}(39)$	$1.360(6)$
$\mathrm{C}(2)-\mathrm{S}(2)$	$1.607(4)$	$\mathrm{C}(11-\mathrm{C}(12)$	$1.400(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.358(7)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.393(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.453(7)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.391(6)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.378(8)$	$\mathrm{C}(35)-\mathrm{C}(40)$	$1.383(6)$
$\mathrm{P}(1)-\mathrm{C}(5)$	$1.824(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.373(6)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.407(8)$	$\mathrm{N}(5)-\mathrm{C}(41)$	$1.170(27)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.814(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.387(6)$	$\mathrm{C}(23)-\mathrm{C}(28)$	$1.389(6)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.527(27)$

Table 3. Selected bond angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$

$\mathbf{P}(1)-\mathrm{Tc}-\mathrm{P}(2)$	174.0(1)	$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{N}(4)$	98.7(2)	$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	177.8(5)	$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{P}(1)$	119.0(3)
$\mathrm{P}(1)-\mathrm{Tc}-\mathrm{N}(1)$	90.8(1)	$\mathrm{N}(3)-\mathrm{Tc}-\mathrm{N}(4)$	174.6(2)	$\mathrm{N}(5)-\mathrm{C}(41)-\mathrm{C}(42)$	175.9(20)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{P}(2)$	121.5(3)
$\mathrm{P}(1)-\mathrm{Tc}-\mathrm{N}(2)$	86.3(1)	$\mathrm{Tc}-\mathrm{P}(1)-\mathrm{C}(5)$	112.8(1)	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(11)$	105.6(2)	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{P}(2)$	119.1(4)
$\mathrm{P}(1)-\mathrm{Tc}-\mathrm{N}(3)$	92.3(1)	Tc-P(1)-C(11)	117.4(1)	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(17)$	103.7(2)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{P}(2)$	122.3(3)
$\mathrm{P}(1)-\mathrm{Tc}-\mathrm{N}(4)$	91.4(1)	Tc-P(1)-C(17)	112.5(1)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(17)$	103.6(2)	$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{P}(2)$	118.7(3)
$\mathrm{P}(2)-\mathrm{Tc}-\mathrm{N}(1)$	87.9(1)	$\mathrm{Tc}-\mathrm{P}(2)-\mathrm{C}(23)$	112.4(1)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(29)$	104.2(2)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{P}(2)$	118.4(3)
$\mathrm{P}(2)-\mathrm{Tc}-\mathrm{N}(2)$	93.0(1)	Tc-P(2)-C(29)	115.6(1)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(35)$	105.6(2)	$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{P}(2)$	122.3(3)
$\mathrm{P}(2)-\mathrm{Tc}-\mathrm{N}(3)$	81.8(1)	$\mathrm{Tc}-\mathrm{P}(2)-\mathrm{C}(35)$	113.7(1)	$\mathrm{C}(29)-\mathrm{P}(2)-\mathrm{C}(35)$	104.3(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	118.7(4)
$\mathbf{P}(2)-\mathrm{Tc}-\mathrm{N}(4)$	94.6(1)	$\mathrm{Tc}-\mathrm{N}(1)-\mathrm{C}(1)$	177.1(4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{P}(1)$	119.7(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	119.0(4)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(2)$	160.7(2)	$\mathrm{Tc}-\mathrm{N}(2)-\mathrm{C}(2)$	166.7(4)	$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{P}(1)$	121.6(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	119.5(4)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(3)$	83.5(1)	$\mathrm{Tc}-\mathrm{N}(3)-\mathrm{C}(3)$	168.6(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{P}(1)$	122.9(3)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	119.4(4)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(4)$	100.4(2)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	177.6(5)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{P}(1)$	118.0 (3)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	119.0 (4)
$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{N}(3)$	77.6(1)	$\mathrm{N}(2)-\mathrm{C}(2)-S(2)$	179.7(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{P}(1)$	121.5(3)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$	119.3(4)

gen atoms. Structure determination and refinement were performed with the SHELX 76 program system ${ }^{15}$ on the Commonwealth Department of Health IBM 370/168 computer.

Results and Discussion

Nitrido-complexes are known for many transition metals but appear to be most readily formed by molybdenum, tungsten, rhenium, ruthenium, and osmium. ${ }^{7,8}$ Technetium will undoubtedly be added to this list as the chemistry of this element is further investigated.
The molecular geometry and atom numbering of the $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ molecule are shown in the Figure. Interatomic bond distances and angles, with e.s.d.s derived from the refinement, are given in Tables 2 and 3. Intra- and inter-molecular contact distances are given in Table 4. The structure consists of discrete molecules of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$, each containing a terminal nitrido-ligand and one co-ordinated acetonitrile molecule. Acetonitrile of crystallization $[\mathrm{N}(5), \mathrm{C}(41), \mathrm{C}(42)$] is also present in the lattice. The technetium co-ordination environment is distorted octahedral.

The $\mathrm{Tc}^{\mathrm{v}} \equiv \mathrm{N}$ bond distance in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] is $1.629(4) \AA$, somewhat longer than that in $[\mathrm{TcN}-$ $\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$] [1.604(6) $\left.\AA\right] .^{6}$ Comparisons of $\mathrm{M}=\mathrm{N}$ bond distances must take into account the co-ordination number and the nature of the ligands. A wide variation of the $\mathrm{Re}=\mathrm{N}$ bond distance has been reported and it has been proposed that this variation is steric in origin. ${ }^{7.16}$ This view is supported by the comparison of the $\mathrm{Re}^{\mathrm{v}} \equiv \mathrm{N}$ bond distance of $1.602(9) \AA$ in the five-co-ordinated $\left[\mathrm{ReNCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{17}$ with that of $1.788(11) \AA$ in the six-co-ordinated mer- $\left[\mathrm{ReNCl}_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]$ which contains three bulky phosphine ligands. ${ }^{18}$ The $\mathrm{Re}^{\mathrm{VI}}=\mathrm{N}$ bond distance in $\left[\mathrm{AsPh}_{4}\right]\left[\mathrm{ReNCl}_{4}\right]$ is $1.619(10) \AA{ }^{19}$ and in $\left[\mathrm{AsPh}_{4}\right]_{2^{-}}$
$\left[\operatorname{ReN}(\mathrm{NCS})_{5}\right]$ it is $1.657(12) \AA .{ }^{20}$ It will be of interest to determine whether a similar variation exists in $\mathrm{Tc} \equiv \mathrm{N}$ bond distances.

The solid-state i.r. spectra of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ show absorptions at 1087 and $1088 \mathrm{~cm}^{-1}$ respectively, which are assigned to the $\mathrm{Tc}=\mathrm{N}$ stretching frequency. Absorption in the region $1000-1100$ cm^{-1} is characteristic of terminal $\mathrm{M} \equiv \mathrm{N}$ groups. ${ }^{8}$

The bonding of the thiocyanato-groups of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}-\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is through the nitrogen atoms. Bonding via nitrogen has been found to be the case for the other technetium thiocyanato-structures reported to date. ${ }^{21-23} \mathrm{The}^{\mathrm{Tc}} \mathrm{c}^{\mathrm{V}}-\mathrm{N}$ single-bond distances in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [2.045(4), $2.068(3) \AA$] are similar to the $\mathrm{Tc}^{\mathrm{III}}-\mathrm{N}$ bond distances in $\left[\mathrm{NBu}_{4}\right]_{3}\left[\mathrm{Tc}(\mathrm{NCS})_{6}\right][2.04(2), 2.05(2) ~ \AA] .{ }^{21}$ The crystal structures of $\left[\mathrm{NMe}_{4}\right]_{2}\left[\mathrm{Tc}^{1 \mathrm{v}}(\mathrm{NCS})_{6}\right]^{22}$ and $\left[\mathrm{NMe}_{4}\right]\left[\mathrm{Tc}^{\mathrm{v}}\right.$ $(\mathrm{NCS})_{6}{ }^{23}$ have been reported but the $\mathrm{Tc}-\mathrm{N}$ bond distances are not given. Both NCS groups of $\left[\mathrm{TcN}\left(\mathrm{NCS}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right.\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] are linear with $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles of 177.6(5) and 179.7(3) ${ }^{\circ}$. However, the $\mathrm{Tc}-\mathrm{N}^{-} \mathrm{C}$ angles differ markedly with $\mathrm{Tc}-\mathrm{N}(1)^{-}$ $\mathrm{C}(1)$ being $177.1(4)$ and $\mathrm{Tc}-\mathrm{N}(2)-\mathrm{C}(2) 166.7(4)^{\circ}$. It is likely that the deviation from linearity of $\mathrm{Tc}-\mathrm{N}(2)-\mathrm{C}(2)$ results from intramolecular steric constraints within the co-ordination sphere. In this regard, it is seen (Table 4) that $N(2)$ in general has closer contacts with the other co-ordinated atoms than does $\mathrm{N}(1)$. There is also a short $\mathrm{S}(2) \cdots \mathrm{H}$ intermolecular contact distance of $2.747 \AA$, which suggests that packing forces within the crystal lattice contribute to the overall $\mathrm{Tc}-\mathrm{NCS}$ geometry. The average $\mathrm{Tc}-\mathrm{N}-\mathrm{C}$ bond angle in $\left[\mathrm{NBu}_{4}{ }_{4}\right]_{3}-$ $\left[\mathrm{Tc}(\mathrm{NCS})_{6}\right]$ is $173(2)^{\circ},{ }^{21}$ while in $\left[\mathrm{AsPh}_{4}\right]_{2}\left[\mathrm{ReN}(\mathrm{NCS})_{5}\right]$ the $\mathrm{Re}^{-\mathrm{N}}-\mathrm{C}$ angles vary from $169.5(10)$ to $174.5(10)^{\circ} .{ }^{20}$ Hazell ${ }^{24}$ noted from a study of the crystallographic data for isothio-cyanato-complexes that an increase in the $\mathrm{M}^{-} \mathrm{N}-\mathrm{C}$ angle from ca. 120 to 180° is generally associated with a decrease in the $\mathrm{N}-\mathrm{C}$ bond distance and an increase in the $\mathrm{C}-\mathrm{S}$ bond distance.

Figure. ORTEP drawing of the $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ molecule. The thermal ellipsoids, and spheres for the carbon atoms with isotropic temperature factors, are drawn at the 30% probability level

In the case of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ the two $\mathrm{N}^{-} \mathrm{C}$ distances $[1.167(6) .1 .160(5) \AA$] and the two $\mathrm{C}-\mathrm{S}$ distances [1.613(5), 1.607(4) \AA] do not differ significantly. However, the $\mathrm{Tc}{ }^{-} \mathrm{N}$ distance in the nearly linear $\mathrm{Tc} \mathrm{c}^{-} \mathrm{N}^{-} \mathrm{C}$ group is significantly shorter than that in the bent grouping.

The solid-state i.r. spectrum of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ showed a single intense peak at $2070 \mathrm{~cm}^{-1}$ due to the NCS ligands. For $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ three NCS absorption bands were present, at 2104,2092 , and $2060 \mathrm{~cm}^{-1}$. The multiplicity of NCS absorption in the acetonitrile adduct is indicative of the lower symmetry of this complex.

The two trans triphenylphosphine ligands are bonded to technetium in an approximately linear fashion with a $\mathrm{P}-\mathrm{Tc}-\mathrm{P}$ angle of $174.0(1)^{\circ}$. The Tc-P bond distances, 2.494(1) and $2.524(1) \AA$, fall in the range ($2.42-2.47 \AA$) of $\mathrm{Tc}^{1 י}-\mathrm{P}$ distances observed in six- and seven-co-ordinate tertiary phosphine
 $\left[\mathrm{PPh}_{3} \mathrm{R}\right]\left[\mathrm{TcCl}_{5}\left(\mathrm{PPh}_{3}\right)\right] \quad\left(\mathrm{R}=1,1\right.$-dimethyl-3-oxobutyl). ${ }^{25}$ Bond distances and angles in the phenyl groups are as expected.
The exceptionally long Tc-N bond distance of 2.491(4) \AA for the co-ordinated acetonitrile group is a result of the powerful trans influence of the nitrido-ligand which apart from the carbyne ligand, is the strongest known π-electron donor. ${ }^{8}$ The $\mathrm{Re}^{-} \mathrm{N}$ bond distance in six-co-ordinate acetonitrile complexes of rhenium varies widely as a consequence of the influence of the trans group. In $\left[\mathrm{ReCl}_{3}(\mathrm{NO})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{26}$ and $\left[\mathrm{ReCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$, ${ }^{27}$ where the acetonitrile ligand is trans to chlorine, the $\mathrm{Re}^{-} \mathrm{N}$ bond distances are 1.95(6) and $2.05 \AA$ respectively. The $\mathrm{Re}^{-} \mathrm{N}$ bond distance increases to an average of $2.13 \AA$ in $f a c-\left[\operatorname{Re}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}(\mathrm{CO})_{3}\right]\left[\mathrm{BF}_{4}\right],{ }^{28} 2.153(11)$ \AA in trans- $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Re}(\mathrm{NO}) \mathrm{Br}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$, ${ }^{29}$ and to $2.31(6) \AA$ in trans- $[\mathrm{AsPh} 4]\left[\mathrm{Re}(\mathrm{O}) \mathrm{Br}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]{ }^{30}$ The long $\mathrm{Tc}^{-} \mathrm{NCCH}_{3}$ bond distance in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is manifested by the ease with which the co-ordinated acetonitrile molecule may be displaced. Dissolution of crystalline $\left[\mathrm{TcN}(\mathrm{NCS})_{2}-\right.$

Table 4. Selected intramolecular and intermolecular contact distances * (\AA) in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$

Tc $\cdots \mathrm{C}(1)$	3.211	$\mathrm{~S}(1) \cdots \mathrm{C}\left(14^{\text {II }}\right)$	3.583
Tc $\cdots \mathrm{C}(2)$	3.208	$\mathrm{~S}(1) \cdots \mathrm{H}\left(14^{1}\right)$	2.825
$\mathrm{Tc} \cdots \mathrm{C}(3)$	3.615	$\mathrm{~S}(1) \cdots \mathrm{H}\left(42 \mathrm{~B}^{\text {II }}\right)$	3.159
$\mathrm{~N}(3) \cdots \mathrm{N}(1)$	3.038	$\mathrm{~S}(2) \cdots \mathrm{H}\left(4 \mathrm{~A}^{\text {III }}\right)$	2.747
$\mathrm{~N}(3) \cdots \mathrm{N}(2)$	2.876	$\mathrm{~N}(4) \cdots \mathrm{H}\left(26^{\text {IV }}\right)$	2.928
$\mathrm{~N}(3) \cdots \mathrm{P}(1)$	3.595	$\mathrm{~N}(5) \cdots \mathrm{H}\left(27^{\text {III }}\right)$	2.995
$\mathrm{~N}(3) \cdots \mathrm{P}(2)$	3.282	$\mathrm{~N}(5) \cdots \mathrm{H}\left(28^{\text {III }}\right)$	2.689
$\mathrm{~N}(4) \cdots \mathrm{N}(1)$	2.836	$\mathrm{~N}(5) \cdots \mathrm{H}\left(33^{\text {II }}\right)$	2.980
$\mathrm{~N}(4) \cdots \mathrm{N}(2)$	2.820	$\mathrm{C}(19) \cdots \mathrm{H}\left(8^{\mathrm{v}}\right)$	2.772
$\mathrm{~N}(4) \cdots \mathrm{P}(1)$	3.011	$\mathrm{C}(19) \cdots \mathrm{H}\left(40^{\mathrm{VI})}\right.$	2.720
$\mathrm{~N}(4) \cdots \mathrm{P}(2)$	3.111	$\mathrm{H}(15) \cdots \mathrm{H}\left(38^{\text {III }}\right)$	2.275
$\mathrm{P}(1) \cdots \mathrm{N}(1)$	3.247		
$\mathrm{P}(1) \cdots \mathrm{N}(2)$	3.137		
$\mathrm{P}(2) \cdots \mathrm{N}(1)$	3.190		
$\mathrm{P}(2) \cdots \mathrm{N}(2)$	3.345		

Roman numeral superscripts refer to the following co-ordinate transformations: I $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; II $1-x, 1-y,-z$; III $-x, 1-y,-z$; IV $-x,-y,-z ; \mathrm{V}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \mathrm{VI} x$, $\frac{1}{2}-y, \frac{1}{2}+z$

* Hydrogen atoms, in idealised positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$), are given the same number as the C atom to which they are bonded. All intermolecular contacts are given within the limits of the contact radii: Tc, 2.5; P and S, 2.0; N, 1.8; C, 1.7; H, $1.2 \AA$.
$\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in chloroform and evaporation to dryness at room temperature resulted in the complete loss of the coordinated acetonitrile and the formation of $\left[\mathrm{TcN}(\mathrm{NCS})_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$.

The acetonitrile ligand in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is essentially linear with a $\mathrm{N}^{-} \mathrm{C}^{-} \mathrm{C}$ angle of $177.8(5)^{\circ}$. However, the acetonitrile is bonded to technetium in a distinctly bent fashion with the $\mathrm{Tc}-\mathrm{N}-\mathrm{C}$ angle of $168.6(4)^{\circ}$. Non-linear metal-acetonitrile linkages have been reported, the $\mathrm{Re}^{-} \mathrm{N}^{-} \mathrm{C}$ angle in $\left[\mathrm{Re}(\mathrm{O}) \mathrm{Br}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$ is $170(4)^{\circ},{ }^{30}$ and angles of $165(4)$ and $158.8(13)^{\circ}$ have been found in two copper complexes. ${ }^{31}$

The solid-state i.r. spectrum of $\left[\mathrm{TcN}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] showed only two very weak peaks attributable to acetonitrile, at 2295 and $2265 \mathrm{~cm}^{-1}$, in the absorption region $2400-2200 \mathrm{~cm}^{-1}$. The absence of $\mathrm{C} \equiv \mathrm{N}$ stretching absorptions has been noted in the i.r. spectra of $\left[\mathrm{ReX}_{3}(\mathrm{RCN})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ($\mathrm{R}=$ alkyl, $\mathrm{X}=\mathrm{Cl}$ or Br) complexes. ${ }^{32}$

A consequence of the large steric requirement of oxoligands in six-co-ordinated $\mathrm{Tc}=\mathrm{O}$ complexes is the displacement of the cis ligands to angles of greater than 90° from the $\mathrm{Tc}=\mathrm{O}$ axis. ${ }^{5}$ This effect is clearly evident in $\left[\mathrm{TcN}(\mathrm{NCS})_{2}-\right.$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$] where the two $\mathrm{N}=\mathrm{Tc}-\mathrm{P}$ angles are 91.4(1) and 94.6(1) ${ }^{\circ}$ and the two $\mathrm{N}=\mathrm{Tc}-\mathrm{NCS}$ angles are 98.7(2) and $100.4(2)^{\circ}$. The lesser displacement of the phosphine ligands has also been found in $\left[\mathrm{ReNCl}_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]$ where the cis$\mathrm{N} \equiv \mathrm{Re}-\mathrm{Cl}$ angle is $99.2(4)^{\circ}$ and the three cis $-\mathrm{N} \equiv \mathrm{Re}^{-}-\mathrm{PEt}_{2} \mathrm{Ph}$ angles are 91.8(4), 95.6(4), and 89.1(4) ${ }^{\circ} .18$

Acknowledgements

We thank Mrs. Veronica Silva of the Materials Research Laboratories, Maribyrnong, for the use of a Weissenberg camera.

References

1 Part 3, J. Baldas, J. Boas, J. Bonnyman, M. F. Mackay, and G. A. Williams, Aust. J. Chem., 1982, 35, 2413.

2 A. G. Jones and A. Davison, Int. J. Appl. Radiat. Isot., 1982, 33, 867, 875.

3 M. J. Clarke and P. H. Fackler, Struct. Bonding (Berlin), 1982, 50, 57.
4 'Radiopharmaceuticals II,' Proc. 2nd Int. Symp. Radiopharmaceuticals, The Society of Nuclear Medicine Inc., New York, 1979.

5 G. Bandoli, U. Mazzi, E. Roncari, and E. Deutsch, Coord. Chem. Rev., 1982, 44, 191.
6 J. Baldas, J. Bonnyman, P. M. Pojer, G. A. Williams, and M. F. Mackay, J. Chem. Soc., Dalton Trans., 1981, 1798.
7 W. P. Griffith, Coord. Chem. Rev., 1972, 8, 369.
8 K. Dehnicke and J. Strähle, Angew. Chem., Int. Ed. Engl., 1981, 20, 413.
9 L. Kaden, B. Lorenz, K. Schmidt, H. Sprinz, and M. Wahren, Isotopenpraxis, 1981, 17, 174.
10 D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.
11 W. Hoppe, Angew. Chem., Int. Ed. Engl., 1965, 4, 508.
12 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
13 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, p. 100.
14 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
15 G. M. Sheldrick, SHELX 76 Program for Crystal Structure Determination, University of Cambridge, 1976.
16 D. Bright and J. A. Ibers, Inorg. Chem., 1969, 8, 709.
17 R. J. Doedens and J. A. Ibers, Inorg. Chem., 1967, 6, 204.
18 P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 1967, 6, 197.

19 W. Liese, K. Dehnicke, R. D. Rogers, R. Shakir, and J. L. Atwood, J. Chem. Soc., Dalton Trans., 1981, 1061.
20 M. A. A. F. de C. T. Carrondo, R. Shakir, and A. C. Skapski, J. Chem. Soc., Dalton Trans., 1978, 844.

21 H. S. Trop, A. Davison, A. G. Jones, M. A. Davis, D. J. Szalda, and S. J. Lippard, Inorg. Chem., 1980, 19, 1105.
22 J. Hauck and K. Schwochau, Inorg. Nucl. Chem. Lett., 1973, 9, 303.

23 J. Hauck and K. Schwochau, Inorg. Nucl. Chem. Lett., 1973, 9, 927.

24 A. C. Hazell, J. Chem. Soc., 1963, 5745.
25 G. Bandoli, D. A. Clemente, U. Mazzi, and E. Roncari, J. Chem. Soc., Dalton Trans., 1982, 1381.
26 N. Mronga, U. Müller, and K. Dehnicke, Z. Anorg. Allg. Chem., 1981, 482, 95.
27 M. G. B. Drew, D. G. Tisley, and R. A. Walton, Chem. Commun., 1970, 600.
28 L. Y. Y. Chan, E. E. Isaacs, and W. A. G. Graham, Can. J. Chem., 1977, 55, 111.
29 G. Ciani, D. Giusto, M. Manassero, and M. Sansoni, J. Chem. Soc., Dalton Trans., 1975, 2156.
30 F. A. Cotton and S. J. Lippard, Inorg. Chem., 1966, 5, 416.
31 R. D. Willett and R. E. Rundle, J. Chem. Phys., 1964, $40,838$.
32 G. Rouschias and G. Wilkinson, J. Chem. Soc. A, 1967, 993.

[^0]: † Supplementary data available (No. SUP 23847, 59 pp.): thermal parameters, observed and calculated structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix.

